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Gene Expression in Plants: Use of System 
Identification for Control of Color 

Terrence P. McGarty and Lloyd Nirenberg, Member, IEEE 

 
Abstract—Plant color is controlled by the expression of certain 

chemicals in secondary pathways in plant metabolism, especially 
the anthocyanin pathways. The secondary pathways are 
controlled by protein concentration resulting from selective genes 
and their rate of expression. This paper analyzes these complex 
pathways as state machines and uses various system 
identification techniques to identify the mechanism of the 
pathways. Using the mechanism of the pathways provides a 
mechanism for control of the pathways to produce a desired 
color 
 

Index Terms—Gene Expression, Secondary Pathways, System 
Identification, Gene Control. 
 

I. INTRODUCTION 

The genetic control of the expression of color in plant 

flowers is currently understood to be effected at several levels 
in the genetic and chemical pathways in plant cells. The most 
recent understanding is that there are secondary chemical 
pathways which produce such chemical products as 
anthocyanins and these pathways are controlled by enzymes, 
proteins, which are the products of genes in the plant cell. The 
plant flower color is then a result of the concentrations of the 
anthocyanins generated in these secondary pathways, for 
example. Each secondary pathway is rate controlled and is 
driven by enzyme concentrations. The greater the 
concentration of the enzyme, the greater the specific 
anthocyanin concentration. At the gene level other controlling 
factors as well. There are other secondary genes which may 
activate or suppress the gene which generates the activating 
enzyme. The combination of these elements can be expressed 
as a dynamic system and the process of determining the 
characteristics of this dynamic system can be posed as a 
classic system identification problem. That problem is 
analyzed in this paper and we focus on a specific species, 
Hemerocallis of the family Lilliaceae, a monocot plant found 
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in China, Korea and Japan. The inverse of this problem is also 
considered, namely if we desire a specific color, then what do 
we seek to control at the gene level to effect this desired color. 
This is the controllability problem. 

 

A. Overview 
 
The following questions are addressed in this analysis and 

model development: 
1. Given a dozen or more species plants which are 

relatively stable and consistent in the wild, how does 
the variation in color in hybrids arise. What is the 
cellular basis of color, and what is the genetic set of 
mechanisms which controls it? 

2. Given the complexity of color, form and variegation in 
the hybrids, what is the genetic basis for the control 
mechanisms intracell and intercell? For example, how 
are such colorations as eyezones formed and what is 
the intercellular communications mechanisms which 
effect this? 

3. Given what now appears to be a set of well-understood 
pathway- control mechanisms by enzymes produced 
within the cell and the gene control mechanisms for 
expression of these proteins, how are these combined 
to produce intra cellular coloration and what are the 
inter cellular communications which spread the colors 
out over the inflorescence? 

4. Given that we can answer the above, can we generate a 
mathematical system for gene expression and control 
and using the model solve the coloration problem using 
system identification or inversion?  

5. Given that we could solve the above problem, then 
how could we apply positive control to coloration and 
produce whatever color we desire? 

 
Our approach in this paper is fairly straightforward. We 

focus on a specific genus, Hemerocalis, and on a specific part 
of the plant in that genus, the inflorescence ( see [1]-[5] each 
of which provides an overview of this genus).  

 
There are two areas which are developed herein. They are 

the characterization of flower color and the system structure 
of genetic control of secondary pathways. 

 
Flower Color: We present an overview of the process of 

developing color in flowers. We present an overview of the 
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anthocyanins, flavonols, and carotenoids. We review their 
pathways and summarize recent research which had identified 
the enzymes on each link of the pathway and the genes 
controlling those enzymes. This has been accomplished over 
the past few years and is critical to the understanding of the 
overall system approach. 

 
Cell Genetics: We provide a detailed overview of cell 

genetics and how activators and repressors are key elements in 
the overall expression of enzymes and in turn the development 
of color. We review the cell elements and especially the 
process of gene expression. We discuss activators and 
repressors and the mechanisms of their actions. Their 
existence results from the work of Monod and Jacob in the 
early 1960s (see [6]-[9] for an overview of the genetic control 
mechanisms for plants). 
 

B. System Models for Gene Expression:  
 
Recently the biological community has applied system models 
to biological systems. We build on that effort and develop 
modals for the expression of flower colors. We recognize that 
color is a result of a mixture of secondary plant products such 
as anthocyanins. We can from the color of a flower determine 
what the mixture of each anthocyanin is. The concentration of 
an anthocyanin is a result of the concentration of the enzymes 
in the pathway which produces the anthocyanin, and typically 
the lowest enzyme concentration is the dominant factor. We 
also know that the concentrations of the enzymes is a result of 
activators and repressors, proteins also generated in a cell, 
which turn on or turn off the enzyme controlling the pathway. 
The work in [10] provides an excellent review of the status of 
systems techniques currently employed in the genetic analysis 
of organisms. 
 
Combining these ideas we can develop a top down system 
model for color. The output or observation equation is the 
color, and the system equation is a dynamic process wherein 
the states are the protein concentrations from a large enough 
set of gene expressions, wherein genes are allowed to control 
other genes via an nth order dynamic process. We also allow 
for uncertainty by adding a “noise” process which converts 
the overall system model into a linear dynamic stochastic 
system with observables. We extend that model from a single 
cell to a matrix of interconnected cells. This allows us to 
explore the processes one sees in the development of eyezones 
and other sharp transitions of color in flowers. We use models 
which have been previously studied for color variation and 
apply those to the flower. In particular we will focus on each 
of the biochemical elements shown below: 
 

Gene Enzyme
Secondary
Pathway

Anthocyaninin
Plant Color

Gene
Expression

Control

Many factors control the expression of 
the gene. Even the cell which is next to 

the one producing the enzyme.

Each anthocyanin creates a color element. The more 
of that one type the richer that element. Combining 

them together creates a totally new color.

Enzymes control 
pathways via mRNA

Reaction
Kinetics

Phenotypic
Color

 
Figure 1: Basic Model for the production of secondary 
pathway agents controlled by underlying gene expression. 
 
C. Prior Work 
 
The key prior works fall into three categories; (i) underlying 
genetic studies and understandings of the genus, (ii) detailed 
elucidation of the control of pathways and the effecting gene 
sequences, and (iii) the development and application of 
models for the analysis and synthesis of gene expression. 
 
1) Genetic Structure of Hemerocalis 
 
Various recent works [11]-[13] have provided detailed genetic 
analyses of the genus. Specifically [12] has provided a 
detailed study of three populations of the species hakuensis 
and has shown that there is a significant intra-species 
variation. This has been known for many years. This was a 
problem for many plant sytematicists who had few examples 
of species available and used this limited number to describe 
the species. It is necessary to perform extensive field work to 
fully understand the intra-species variation. 
 
Specifically [13] have studied the species citrina. Their work 
included a detailed analysis of certain exons and an 
understanding of the evolution of this species. They have 
begun to establish a basis for genetic analysis of within 
species characteristics. Extensive work in [14]-[16] have 
shown a detailed analysis of the full genetic variation in the 
genus using AFLP markers. They have also extended this to 
include many of the current common hybrids. Their key 
observation is that in the recent hybrids that they studied the 
genetic similarity has increased by approximately 10%. This 
demonstrates the rather interesting effect that if the genetic 
diversity is decreasing and the phenotypic changes are 
increasing then it clearly must be via expression. 
 
2) Gene Expression and Pathway Control 
 
Within the last five to ten years there has been considerable 
growth in the understanding of the control of the pathways 
which provide for color. The recent work in [17] provides a 
superb summary. The author reviews prior efforts and puts the 
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entire pathway management into perspective. [17] provides all 
controlling proteins and their causing genes. [17] does this for 
anthocyanins and flavones and isoflavonoids. The relationship 
to the abundance of effecting enzymes and anthocyanin 
expression as well as flavone expression is clearly 
demonstrated. This gives us a key in the development for our 
model. The work [18]-[19] predates [17] and is the seminal 
paper on genetic control of pathways. The authors in [18] 
have continued to publish their results on further clarification 
of the pathway management by gene expression.[20] was the 
first to publish the full pathway and that work is a major 
contribution to the field. Work on carotenoid pathways has 
been completed [21] and [22]. 
 
3) Modeling of Gene Expression: Analysis and Synthesis 
 
The development of systems modeling for gene expression 
has most recently been exceptionally well articulated in [23]. 
In this work a collection of authors who are a mixture of 
systems experts and micro biologists present an up to date 
summary of all key works in this area. The work [24] is also 
an excellent modeling tool which applies a more Boolean 
approach to modeling the expression of genes. However the 
authors also extend their models to include mRNA and other 
pathways in a linear time varying system model as well. This 
latter approach coincides with the recent directions portrayed 
[23] and is consistent with the approach taken herein. [25] has 
provided a neural network approach to the understanding of 
gene expression. Although highly flexible this model is at best 
amenable for limited simulation analysis. [26] has provided a 
detailed systems model for expression using classic dynamic 
systems models. [27] has also provided a detailed dynamic 
model using their “differential equations” approach. We see 
that [26] and [27] have a great many similarities, as does the 
collection of authors in [23] but they all seem at best to be just 
becoming aware of the wealth of well understood theory in the 
control and estimation area [28].  
 

II. FLOWER COLOR EXPRESSION 
 
There is an extraordinary variation in the color of the 
hybridized flowers of the genus Hemerocallis. In a little over a 
hundred years hybridizers have taken the dozen or so species, 
all predominantly yellow, orange or red, intermixed them and 
as a result have created a very complex set of flowers with 
characteristics which differ dramatically from each of the 
species. The species have managed to maintain their separate 
identities over thousands of years but in a small fraction of 
time we have been able to introduce multiple forms and 
colors. To understand this process we first have to understand 
where the colors come from. How do we get purple from a 
plant which is red, yellow, orange and possibly even brown? 
How are the colors made? In this paper we focus on 
inflorescences of one color. The issue of variegated 
inflorescence has been studied initially in 1949 [29] in a 
brilliant paper before the Watson Crick model was developed 
and his analysis is expounded upon in Murray. The Turing 
model [29] is more complex than what we present here and 
will be detailed in another paper. 

 
The first step in understanding that process is to understand 
the pathways that lead to color production in a single cell. 
Then we can address the issue of multiple cells and finally 
how the cells communicate. For example, how do we get an 
eyezone?. Why if a cell is white do we go so abruptly to a 
purple eyezone? What is the mechanism for this process? We 
begin the exploration of this issue with a analysis of the 
underlying pathways. 
 
A. Pathways and Enzymes 
 
Pathways are nothing more than a set of chemical reactions 
which get us from some primitive chemical to a more complex 
but useful chemical structure (see [60], [30], and [31]).In fact 
the pathways may be just a set of processes going from any 
one chemical structure to another independent of the nature of 
the starting and starting chemical. Some pathways are linear 
going from a beginning to and end and some are circular 
taking us from the beginning and back again (the Krebs cycle 
is an example). What makes the pathway work? Just three 
elements are required: (i) the underlying chemical 
constituents, (ii) some form of energy, (iii) generally some 
form of facilitation such as a catalyst and in our analyses this 
is an enzyme. We have the pathway but it  is facilitated by an 
enzyme, a protein. The protein is generated by a gene. And the 
gene is activated by some other element, generally another 
protein. In our case shown below the output is some 
anthocyanin. The more of the enzyme, the more the gene 
expresses itself and the more anthocyanin we get; this is the 
basis of enzyme reaction kinetics [32]-[35]. Thus if we can get 
the gene to express then we get more of that specific 
anthocyanin, more pelargonidin for example. We defer to the 
next section how we get this gene to express so strongly. The 
opposite is also true: if we can suppress the gene then we can 
get less and even possibly no anthocyanin from the pathway. 
This is the first step in the development of an overall system 
model. 
 
B. Anthocyanins 
 
Let us consider our first pathway. This is the pathway which 
creates anthocyanins (see [17], [19], [20], and [36]). The 
anthocyanin molecule is shown below. Note on the B ring we 
have six sites to which we can attach differing molecular 
chains. This will be an important element when we see the 
different configurations and their implications. The 
anthocyanin or anthocyanidin molecule comes from two 
different pathways (see [37]-[39]). One is from the shikimic 
pathway and the other from the malonate pathway. This 
means that we have to understand both pathways to 
understand the ultimate abundance of the product. 

 
In the Table 1 below we list the anthocyanidin and its 
resulting color. Each is obviously named after their related 
flower and each results an anthocyanin of a different color.  
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TABLE 1: ANTHOCYANIN AND ASSOCIATED COLOR 
RESULTING FROM ITS ACTIVATION 

 
Anthocyanidin Color 
Pelargonadin 

 
orange-red 

Cyanidin 
 

purplish red 

Delphinidin 
 

bluish purple 

Peonidin 
 

rosy red 

Petunidin 
 

purple 

 
Each of the colors is the weighting of a red, green and blue 
combination which best matches the color. Thus one can, in 
an 8 bit color scheme for example, as one would find in any 
PC color scheme, get the resulting anthocyanin colors by 
blending the R, B, G elements to yield what we seek. This 
relating the colors back to RBG is critical since it get reflected 
in the ultimate flower color. 

 
Now if we assume we have only anthocyanins for color, and 
that we have the above combinations available, we ask how 
do we combine these colors in a weighted manner to obtain 
the desired color. This approach is critical to our overall 
understanding. First we show by a weighted RBG we get the 
color we seek or the color which is presented. Then we 
assume that if we can then do the same for each anthocyanin, 
then we can create any desired color from a weighted 
collection of anthocyanins. This means that we can determine 
what the relative percents of expression of any anthocyanin 
are and this lets us go back to how strongly the gene for that 
anthocyanin is expressed. The model we presented earlier will 
be a key element in this overall process. 
 

Now let us start with a simple expression ( see [40], [41], 
and [42] ). This text presents a detailed analysis of how color 
is characterized in the red/green/blue model. This model 
carries over directly to the computer color model that is 
currently in use. We have used it as a core baseline for the 
observable from the overall secondary pathway process. Thus 
for any color we can write: 
 

1 2 3Color=w Red +w Blue + w Green

Red = color base of Red

Green = color base of Green

Blue = color base of Blue

                         (1) 

 
and if we define: 
 

1

2

3

Red

s= Green

Blue

w
w w

w

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                (2) 

 
resulting in:  
 

TColor w s=                                                    (3) 
 
Likewise we could state this by means of some combination 
of anthocyanins and their related colors. Now we can define 
any color as a combination of the three anthocyanin 
concentrations and the concentrations effects on color by 
using the basic red, green and blue bases as below: 
 

1 2 3

1,P 1,P 1,P

2,D 2,D 2,D

3,C 3,C 3,C

Color=m Pelargonidin +m Delphinidin +m Cyanidin

Pelargonidin =g Red +g Blue +g Green

Delphinidin =g Red +g Blue +g Green

Cyanidin =g Red +g Blue +g Green

(4) 

 
We can measure the coefficients g in the above using standard 
colorimetry. If we define a matrix G as follows: 
 

1,P 2,P 3,P

1,D 2,D 3,D

1,C 2,C 3,C

g   g   g
G= g   g   g

g   g   g

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

                                            (5) 

 
Then we can determine the color as a simple product and the 
m values can be determined directly. 
 

T T

-1

Color=m Gs=w s

m=G w

                                               (6) 

 
 
The above analysis shows us that we can analytically 
determine the expression of the anthocyanins from the color 
of the cell by means of the above formulas. Color is 
determined in the Red, Blue, Green approach by weighting 
each of this prime colors by some weight w. Also we can 
obtain the same color by weighting the alternative colors as 
associated with the anthocyanins present by a similar weight 
in this case m and m is directly related to the concentration of 
that anthocyanin. These are relative expressions but by 
benchmarking any one element we can make them all absolute 
in the cell as well. 
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C. Other Color Elements 
 
Anthocyanins are not the only elements which are secondary 
products which produce color. There are three classes of 
chemicals which give rise to color; anthocyanins, flavones or 
flavonols, and carotenoids. The Table 2 below depicts the 
different elements and their colors. The approach we took 
above for the anthocyanins can be used for the flavones and 
carotenoids as well. It should be noted that there may not be a 
unique solution here but there are several possible. The 
solutions can be narrowed down by actual determination of 
one to three elements as baseline. The other two general 
classes are the carotenoids, the orange colors, and the 
flavonoids, the more white type of colors. We summarize the 
colors in the following Table 2. 
 
TABLE 2: SUMMARY OF THE THREE MAJOR CLASSES 

AND THEIR AGENTS AND RESULTING COLORS. 
 

Class Agent Color 
Anthocyanidin   

 Pelargonidin orange-red 
 Cyanidin purplish-red 
 Delphinidin bluish-purple 
 Peonidin rosy red 
 Petunidin purple 
 Malvinidin  
   

Flavonol   
 Kaempferol ivory cream 
 Quercetin cream 
 Myricetin cream 
 Isorhamnetin  
 Larycitrin  
 Syringetin  
 Luteolin yellowish 
 Agipenin Cream 
   

Carotenoids   
 Carotene orange 
 Lycopene Orange-red 

 
D. Pathways 
 
In this section we present the pathways for the three classes 
we have described above. We first present an overview of the 
pathway and then we present the details of the pathway and 
the enzymes used in each step. The key observation is that we 
must have enzymes to go from step to step in the pathways 
and that if any one enzyme is missing we cannot proceed on 
that path, and further the path with the small amount of 
enzyme becomes the limiting path. Thus, we do not have a 
one to one map here. The production of any one anthocyanin, 
for example, if limited by the lowest produced enzyme, and 
the other enzymes may be present in abundance. 
 
The following is the overall pathway for all elements. 
 

 

Photosynthesis

Pentose
phosphate
pathway

Glycolysis

Erythosde 4-phosphate

Tricoxylic
acid cycle

Mevalonic
acid

pathway

Malonic acid
pathway

Phenolic
Compounds

Shikimic acid pathway

Nitrogen Containing
Secondaries

Aliphatic amino acids

Acetyl co-
enzyme A

Phospoenol pyrivic acid

Carbohydrates

Aromatic amino acids

CO2

 
Figure 2: Pathway for the production of anthocyanin from 
Carbon Dioxide. 
 
The above shows how we start from CO2 and then go through 
a variety of other pathways. We will review those pathways in 
some detail since it is the enzyme control in them which is 
key. The pathway moves forward at a reaction rate which is 
determined by the concentration of the reaction supporting 
enzymes. This is modeled by standard enzyme reaction 
kinetics as is provided in [32], [43], and [10].  
 
1) Anthocyanin Pathway 
 
The anthocyanin pathway with the controlling enzymes is 
shown in Figure 4. The enzymes are presented in the arrows 
linking each step in this pathway. This pathway shows the 
start as a sugar element and then goes to phenyanaline and 
then down through the chain to one of the four indicated 
anthocyanins. 
 
FIGURE 4: SPECIFIC ANTHOCYANIN PATHWAY FOR 

SPECIFIC PRODUCTS. 

PhenylanalineSugars from
Photosynthesis

coumaroyl

tetrahydroxychalcone

Narinigenin

Dihydroxyamptirol

DihydromyrecetinDihydroqueritin

Cyanidin Delphinidin

Peonidin Malvidin

F3'5'H
and

DIF-F
F3'H

CHS

CHI

F3'H

RT, 5GT, A5'MT, A3'MT

DFR, AS, 3GT DF, R, AS, 3GT

RT, 5GT, A5'M. T. A3'M, T

 
Figure 3: Specific Pathways for specific anthocyanins and the 
gene control via enzymes in specific pathway transitions. 
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Note that at each step there is an enzyme element. The genetic 
loci for cloned flavonoid enzymes in Arabidopsis are shown 
in the following Table 3.

 
TABLE 3: ACTIVATING ENZYMES AND THE 

ASSOCIATED CHROMOSOME AND GENE LOCATION 
 

Enzyme Locus Chromosome Map Position 
CHS tt4 5 7,050 kb 

(MAC12) 
CHI tt5 3 21,000 kb 

(T15C9) 
F3H tt6 3 19,600 kb 

(F24M12) 
F39H tt7 5 4,400 kb 

(F13G24) 
FLS fls1<Enc 5 FLS1: 4,700 

kb (MAH20) 
FLS2-5;: 
32,150 kb 
(MBK5) 
FLS6: 

24,350 kb 
(MRH10) 

 
DFR tt3 5 23,800 kb 

(MJB21) 
LDOX tt19 4 16,900 kb 

(F7H19) 
LCR ban,ast d 1 26,800 kb 

(T13M11) 
 

 
What these process point out can be summarized as follows: 
 
1. There are common pathways which are operational in all 

plants for the generation of the pigments. 
 
2. Enzymes used as activators modulate the amount of 

production of the enzymes. 
 
3. The products of these pathways, the anthocyanins, are 

driven by the concentration of the facilitating enzymes.  
 
Secondary products always have this type of production 
process. As we look at a cell, from a system point of view we 
see facilitating proteins and secondary products. The 
concentration of the secondaries are proportional, in some 
general way, to the concentration of the facilitating proteins. 
However we see there are many facilitating proteins which 
may make this a more complex analysis, however doable. 
 
2) Carotenoid Pathway 
 
The carotenoid pathway is shown in [30]. It is similar in many 
ways to the anthocyanin. 
 

3) Flavonol Pathway 
 
The flavonol pathway is identical to that of the anthocyanin 
and is detailed in the work of [17]. 
 

III. EXPRESSION ANALYSIS AND IMPLICATIONS 
 
In this section we develop a systems approach to the problem 
of color analysis and synthesis. This work is based upon the 
recent work [23] and also builds upon the work in McGarty 
(1971) which focused a systems approach to the overall 
identification problem. 
 
A. Approach: Engineering versus Science 
 
The approach we take in this paper is an engineering approach 
rather than a biological approach (see [24]-[26]). Our interest 
is in developing a model or sets of models which allow us, by 
a verifiable means, to show how the genes react and interact to 
produce the plant colors. We can compare this to the 
engineering approach to circuit design of transistor circuits 
versus the science of understanding the semiconductor from 
the point of view of detailed quantum mechanical models. The 
biologist in our approach is akin to the physicists. Our 
approach is akin to the engineer knowing that there is some 
set of physical processes inside the semiconductor which may 
clearly be important to the physicist but the engineer’s interest 
is in designing and analyzing the circuit element to produce a 
system that behaves in a specific way. Thus for an engineer, if 
we increase a current here we get a decrease or an increase at 
some other point. The engineer creates a world view of a 
macro set of processes and models the details of the biologists 
in our case with a few set of equations which show the results 
of increases and decreases. One must be able to make 
measurements to show that the processes predicted indeed 
occur, to a reasonable degree of accuracy. Then one can 
analyze a genetic circuit and then in addition one can design a 
genetic circuit. We then can understand where the colors come 
from and possibly engineer the genes to develop and deliver 
on colors we desire. 
 
B. A Control Paradigm 
 
The expression regulator for any gene may be an activator or 
suppressor gene. It may be a result of a gene expression in the 
cell itself or quite possibly as we shall discuss fed through 
from another cell. There are many of these regulatory cycles 
and they are all interconnected. This basic paradigm is one of 
hundreds or thousands of such interconnected flows. 
 
In developing our models we will use this construct. However, 
we can frequently focus on natural clusters of related genes. 
They may be a dozen or more such related genes in each 
cluster and possibly hundred of such clusters. Although cells 
and their proteins may affect all other cells, only a few of the 
genes regulated have a significant level of regulation. The low 
levels of “regulation” we shall consider just as noise. 
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C. A Model for Secondary Production 
 

A system model for the relationship between the genes, 
proteins and secondary path chemicals can be developed. We 
assume we know or can determine the following: 

 
1. The secondary pathway chemical steps are known. 

This includes what enzymes modulate what transitions 
in the pathway. 

2. The resulting concentrations of the products from the 
secondary pathways are proportional to the 
concentrations of the enzymes acting as catalysts on 
the pathways. Namely the pathways follow known 
enzyme reaction kinetics. 

3. The concentrations that result from the secondary 
pathways are reflective in the phenotype characteristic 
perceived.  

4. That the phenotype characteristics perceived are 
measurable and can be analytically related to 
concentrations in secondary pathway products. 

5. The genes which produce enzymes which modulate 
secondary pathways are known in detail. 

6. That activator and repressor genes of the modulator 
genes are known or knowable. Their specific effect on 
the modulating gene does not have to be known a 
priori. 

7. There exists a database of genes which are modulator, 
repressor, and activator characteristic from which one 
may be able to analyze their levels of expression using 
microarray or similar technologies. 

 
In the event that these assumptions are valid, which is the 

case now for many plants, as well as many animal models 
including humans, then one can develop models to determine 
the “system model” of the genes and the secondary pathway 
elements. This is the “analysis” portion of the system. It 
provides the elements of the system and quantitative values 
for its dynamic behavior. The second portion is the 
“synthesis” portion. In the synthesis portion we assume we 
have determined the values to model the dynamics of the 
system. Next we seek to drive the system to a desired state, in 
this case a desired flower color. To many this is the “blue 
rose” or the “blue daylily” issue. We commence with a model 
for the gene and its control, the secondary pathway and 
complete the analysis issue. The system model is depicted in 
the following Figure 4. 

 

Pathway

Gene 1

Gene n

Gene m

Gene k

Gene i

Protein 1

Protein n

Protein m

Protein k

Protein i

mRNA 1

mRNA i

mRNA k

mRNA m

mRNA n

Suppress

Activate

Chemical A

Chemical B

Pathway Enzyme

 
Figure 4: Model of pathway control and linkages between 

activating and suppressing genes. 
 
The Equation (7) is an example of a general form for the 

expression of genes by means of the concentrations of the 
proteins related to specific genes. In the equation the 
expression of n genes is given as an n X 1 vector and the time 
variation of that vector is expressed as the sum of three other 
vectors; one is a vector which is dependent in a nonlinear 
manner on the concentrations themselves as well as time, one 
which is a function of some external set of influences which is 
a q x 1 vector u as well as time and an n x 1 vector which acts 
like random noise which accounts for a combination of noise 
and uncertainties. 
 

[ ]k k

dx =f(x,t)+g(u,t)+n(t)
dt

x = Concentration P
                                               (7) 

 
A system model for the secondary pathways may also be 

developed. In this embodiment the following equation is an 
example of a general form for the secondary pathway. The m 
x 1 vector z represents what is observed and what in turn 
produces the phenotype characteristics. In the case of flower 
color the z elements may be the anthocyanin concentrations 
for example. In the equation below the z vector is a nonlinear 
function of the protein or enzyme concentrations plus added 
random noise which represents uncertainties as well as natural 
external disturbing measurement phenomenon, where we have 
used w(t) a white noise process to account for both 
measurement model inaccuracies and measurement errors. 
 
 
z(t)=h(x(t),t)+w(t)                                                          (8) 
 
 

  The general models used above in this embodiment may 
be simplified by using standard techniques of linearizing 
them. The result of such a standard linearization process is 
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shown in the following equation. In the equation below the x 
vector is the protein concentrations resulting from genetic 
pathways and the z vector is the concentrations of the 
anthocyanins or in general they are the concentrations 
resulting from the secondary path chemical products. In this 
model the relationship of the protein concentrations to 
secondary chemical concentrations is assumed known or 
knowable. In this embodiment the elements depicting the 
dynamics of the protein concentrations are assumed unknown 
but can be ascertained quantitatively by means of the methods 
discussed herein. 
 

[ ]
[ ]
[ ]

N
T

i j
i=1

dx =Ax+ g p D x+o(x)+g(u)+v
dt

z=h(x)+w=Cx+w

Pelargonidin

z= Delphinidin

Cyanidin

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

                         (9) 

 The above model may be further linearized to yield a 
simple linear system model which can be used in this 
embodiment. This simple linear model is shown in the 
following set of equations. The vector x is the set of protein 
concentrations resulting from the set of n gene expression 
interactions. The matrix a depicts the interaction between all 
of the genes as activators or repressors. the vector u is a 
known or unknown independent driving vector to the gene 
expression product. In this embodiments the matrix A will be 
determined by means of the procedures provided in this 
embodiment. The second equation depicts the steady state 
solution of the first equation. It should be noted that the steady 
state model is acceptable for plant color but the dynamic 
model may be required in many other systems where there is a 
dynamic portion to the system such as when in a human 
hormone release is involved. For the most part, however, 
steady state is adequate. 

 
The steady state solution depicted below use the vector u 

and the inverse of the matrix A. In the equation below the 
vector x is composed of protein concentrations which effect 
secondary pathways such as the ones for the anthocyanins as 
well as genes which activate or repress the genes which 
directly express for color as shown in the equation below. In 
the equation below the concentration of secondary chemical 
products, z, are shown to relate to the concentrations of the 
proteins resulting from the first process. The relationship is 
via a matrix C which is in the equation below. Finally in the 
equations below the weight elements of the color expression, 
the vector elements denoted by m, are shown to be obtained 
from the concentrations of the secondary products. 

 

dx(t)=Ax(t)+u(t)
dt

                                        (10) 

 
For the steady state solution we have: 
 

-1

1

2

3

4

5

6

x=A u

x Concentration Enzyme effecting Pelargonidin
x Concentration Enzyme effecting Delphinidin
x Concentration Enzyme effecting Cyanidin
x = Concentration Activator of Pelar
x
x
...

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

gonidin gene
Concentration Repressor of Pelardonidin gene
Concentration  Activator of Delphinidin gene
..... 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  (11) 

 
The measurements can be described as follows: 
 

-1

1

2

3

z=Cx=CA u

z Concentration of Pelargonidin
z = Concentration of Delphinidin

Concentration of Cyanidin z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

           (12) 

 
From this we can obtain the relationships: 
 

,

1 1 1

2 2 2

3 3 3

-1

m =κ z
m =κ z
m =κ z
or

m Kz and z=K m=

                                       (13) 

 
In the above we have assumed the following: 
 

1. The system is at steady state. The expansion to a dynamic 
system is possible but it is unrealistic for plant colors. It 
functions in dynamic processes such as blood chemistry 
and endocrinology. 

2. There is an unknown matrix A which we ultimately desire 
to obtain based upon the measurements made. This is the 
basis of the system identification problem. 

3. There is a constant vector u which is the driver for the 
system. 

4. There is a known relationship between the color elements 
in the space of colors using anthocyanin elements which 
can be used to determine the concentration of the 
anthocyanins. This is the K matrix and we assume that it 
is a diagonal with known values. 

 
The experimental data approach we use for the system 
identification process is the microarray. We assume we 
have a large collection of genes which have been 
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sequenced for the targetd flower. We also assume that we 
can create a microarray for these know genes and then 
using the array take samples of many different colors and 
test them in the array for the gene expressions. We also 
assume that we can determine expression intensity by 
measuring the expression intensity in each microarry cell 
(see [44] and [45] ). 
 
In the following Figure we depict a microarry which is 
composed of cells, one in each row-column pair. Each 
cell contains a row cDNA sample from a specific 
phenotype, and a column sample from a specific color, C. 
The cell then can be measured as to the intensity of the 
expression of the specific cDNA for each color. These 
measurements then become the basis of the data set. 

 

C1 C2 C3 C4 C5 C6 C7
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10

 
Figure 5: Example of a Microarray output showing activated 
cells for specific gene and color pairs. The rows are gene 
elements and the columns are form specific plant flowers. 

 
By using standard means of microarry analysis (see [44], 

[45], [10], and [39])  as discussed above, the concentration of 
the protein may be determined. Simply, by having the row 
represent a know gene from the plant flower, and the columns 
being for sample from each color, we can measure the relative 
concentration of the products of genes for each color. This 
will be a key element in our determination of the system 
control parameters. 

 
This concentration for the cell is denoted by the variable x. 

The phenotype color element is processed in a spectrum 
splitter which uses standard technology to determine the 
matrix elements of the Red, Green, and Blue elements. Using 
a color inversion matrix  as described previously as G in this 
embodiment the vector weights for the secondary pathway 
chemical concentrations are obtained as denotes as vector 
elements m. Using a concentration matrix inversion processor  
the concentrations of the separate secondary chemicals 
denoted by vector elements c, in the case of Figure below. 

 

C k

Pj

SPECTRUM SPLITTER

R G B

COLOR MATRIX
INVERSION

m 1 m 2 m 3

CONCENTRATION MATRIX
INVERSION

C 1 C 2 C 3

Microarray

The colum entry is the seeding of
each element in a column with a
DNA segment from a plant of a
specific phenotype, in this case

color

The row entry is
from a know gene
segment on the

plant. The
assumption is that
we have a large
section of these
gene segments

 
 
Figure 6: The models for the control of secondary products 
and their resulting phenotype results and the underlying gene 
control through enzyme management of the secondary 
pathway. 
 
Specifically we perform the following steps: 
 

1. Collect samples from various phenotypes, in this case 
color patches from the flower. 

2. Prepare the cDNA from the plant 
3. Prepare a microarray using the cDNA versus the 

various phenotypic color elements. 
4. Run microarray analysis to obtain expression for 

each cDNA and phenotype cell entry. 
5. Calculate the gene expression values for each 

microarray entry and denote the expression as a 
concentration element x(i,k), which is a measure of 
the concentration of protein element in row k for 
each color sample i. 

6. Calculate color components for each color entry 
column and denote these in terms of standard R, G, B 
elements. 

7. Calculate secondary pathway concentrations of their 
products, such as anthocyanins, based on the 
determined R, G, B elements and denote these 
secondary pathway product concentrations as z(i,k). 

8. The above steps provide the basis for the analysis 
procedure to determine the system control constants, 
namely the system identification problem. 
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D. System Identification 
 
The next step is to use the data obtained to estimate the 

constants we have assumed exist in the model for the 
modulator, repressor, activator genes and the control of the 
secondary pathway. 

 
A set of measurements from the microarray data are 

collected and are presented in the equations below. The 
measurements consist of a vector composed of two sets of 
data; the phenotype elements and the gene expression 
concentration elements as described above. The equations 
below depict the measurements consisting of a collection of 
phenotype elements, m, and gene expression concentrations, 
x, for the entire collected data set. Namely we have a 
measurement tuple for every color column denoted by: 

 
{ }1 2 3 1, , , ,..., nm m m x x                                              (14) 
 
The notation depicting this data set is further described in 

the equations below. The model employed in this embodiment 
then can show that the concentrations are related to the 
unknown expression matrix entries as is shown in the equation 
below relating x to the elements a of A and the elements of u. 
The elements a of A are defined in the equations below. Using 
standard matrix inversion methods the inverse elements are 
defined in the equations below and this permits the expression 
of the phenotypic secondary elements in terms of the matrix 
inverse elements as is shown in the equations below. 

 
{ }

{ }

1 2 3 1

3
1 2 1

, , , ,...,

, , , ,..., 1.....

n

k k k k
k n measure

m m m x x
or

m m m x x k N=   

          (15) 

 
Using the steady state model we obtain for the x values of 
concentrations the following: 
 

1

N
ji

j i
i

x a u
=

= ∑                                                                (16) 

 
where we have defined the inverse by the terms shown as 
follows: 
 

11 1

-1

1

....
............

....

n

n nn

a a
A

a a

⎡ ⎤
⎢ ⎥

= ⎢
⎢ ⎥
⎣ ⎦

{ }

{ }

1 2 3 1

3
1 2 1

1

11 1

-1

1

1 1

, , , ,...,

, , , ,..., 1.....

....
............

....

( ) : 1,3

n

k k k k
k n measure

N
ji

j i
i

n

n nn

N N
ij

n ni j
i j

m m m x x
or

m m m x x k N

x a u

a a
A

a a

m nm a u nκ

=

= =

=

=

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

= =

∑

∑ ∑

   

 

The next step is the calculation of the unknown matrix A 
from the collected data set of m values and x values specified. 
The first step in the process is the definition of the unknown 
elements of the matrix A as a vector of n2 elements. The 
method chosen is a least squares fit method using a sequential 
procedure for obtaining the optimal fit from the data from 
each of the microcell elements. In the equations below the 
unknown elements are depicted as an n2  vector. The objective 
is to determine an estimate of each entry and the vector 
estimate is denoted by . The least square means is one 
which minimizes the squared difference between the actual 
measured data as obtained and what the estimator predicts the 
data element should be using the most recent best estimate of 
the values a. This is stated mathematically in the equations 
below. Using standard mathematical techniques, namely a 
Newton method for solving the optimality problem, this is 
shown below as being the equivalent to solving a set of 
equations of a variable p (see [46] p. 111 for description using 
the Newton method as is done here ). We thus seek to find an 
a vector as below: 

â

 
ˆ

ˆ
ˆ

ˆ

ˆ

11 1

1n

n1

Nnn

a a
.. .
a .

a= .. = .
.a
...
aa

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦

                                                 (18) 

⎥                                                           (17) 
 
to minimize the following metric:  
 

( )ˆ ˆ
M N 22

i i j j
i=1 j=1

min (m -m ) + x -x
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑                              (19) 

 
where we define an h function as: 
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( )ˆ ˆ
M N 22

i i j j
i=1 j=1

h(a)= (m -m ) + x -x
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
∑ ∑                         (20) 

 
and we seek a stationary point as follows: 
 

( ) ( ) 0, 1...n
n

h a p a n
a

∂
= = =

∂
N                                   (21) 

 
where the stationary point is defined as: 
 

1

N

p
p(a)= .. =0

p

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                       (22) 

 
Using standard mathematical procedures, the equations in 

the previous portion of the embodiment may be solved in the 
following set of equations. The objective is to find the values 
of a which make the vector p zero. To accomplish this in the 
following equations a matrix K is obtained by the 
mathematical procedure depicted in the equations. The 
estimate of a after k+1 sampled from a microarry depicted in 
Fig 4 is shown as a function of the estimates after k samples 
from the same array. This procedure is performed sequentially 
for all samples in the array as shown in Fig. 4. 

 
We desire to determine the a to solve: 

 
( ) 0p a =                                                              (23) 

 
We can define a matrix as follows: 
 

-1

1 1

1

1

( )( ) -

:

.....

( ) ...................

.....

n

n n

n

p aK a
a

where we define
p p
a a

p a
a

p p
a a

∂⎡ ⎤= ⎢ ⎥∂⎣ ⎦

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥∂⎡ ⎤ ⎢ ⎥=⎢ ⎥∂ ⎢ ⎥⎣ ⎦ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

                                          (24) 

 
with the solution can be sequentially determined as follows: 
 
ˆ ˆ ˆ ˆ( 1) ( ) ( ( )) ( ( ))a k a k K a k p a k+ = +                               (25) 

 
 
 

The process for solving the optimization is depicted in the 
following set of equations. The process commences with an 
initial guess for the vector a. Then the iterative process begins. 
A special method of elimination is proposed between steps. 

The method of elimination is one where genes which are not 
expressed may be eliminated from the sample. The 
determination of a non-expression gene can be determined 
from the process of stating that a gene is non expressing if it 
does not express or expresses below a set threshold level in 
any cell. We calculate the K gradient as shown in the 
equations below. We use the K matrix and calculate the p 
vector for the next steps as is shown in the equations below. 
We iteratively use the results of one step to determined the 
next best estimate. This process proceeds until complete. 
When complete, the best estimate of the elements of A is 
determined. The matrix K and the vector p are all evaluated by 
means of the difference values shown in the following 
equations ( see [46] for examples of such optimization and see 
[47] with the same approach except using an estimation 
optimization. Also system identification techniques are the 
same as in [48] and [49] ). 

 
0â(0)=a                                                                (26) 

 
which is the initial guess. The we use the first data tuple 
which we obtain from the microarry data as it may be 
normalized: 
 
ˆ ˆ ˆ ˆa(1)=a(0)+A(a(0))g((a(0))                                     (27) 
 
The difference elements are determined as follows and used: 
 

k k,measured

k k,measured

x̂ (0)-x (0)

and
m̂ (0)-m (0)

                                           (28) 

 
as the data entry element for each of the data elements and 
where the estimates are calculated using the data collected 
from the system equations. 

 

E. Modification for on/off A/R Genes 
 
There is a slight modification we must include to deal with 
genes being on or off. We must return to the beginning to best 
understand it. Namely if the a’s in the system matrix are all 
constant then by definition the colors remain the same. 
However, if any one or more of the A/R genes are on or off 
then we can get variation. We first explore the implications of 
this and then we modify the estimator process accordingly. 
Let us review our model assumptions: 
 

1. We assume that the genes directing the secondary 
pathway are always functioning. 

 
2. We assume that the constants in the gene expression 

model and secondary control are all constant and 
remain so. 
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3. We assume that the A/R gene may be on or off. They 
are controlled via some tertiary process yet to be 
determined. 

 
Thus, we can consider the example of a three gene system 
with two A/R gene per expression gene we have 4X4X4 
possible states. This means we have 64 possible color states. If 
we have n A/R genes per expression gene and we have m 
expression genes we have 2nm possible color states. Now the 
above algorithm is a least squares estimate algorithm given an 
A/R gene state. We now propose a model where we first 
estimate the state of the A/R genes and then given that state 
we use the least squares approach to estimate the a values 
which remain. Thus if a specific A/R gene is in a 0 state we 
then zero out its effecting a value and estimate the remaining a 
values as we would have done before. The mathematical 
analysis to justify the algorithm uses the MAP or maximum a 
posteriori estimate approach (see [50] ). Specifically, we  
maximize the following: 
 

/ln  ( / )
0a zp A Z

A
∂

=
∂

                                                  (29) 

 
[50] has shown the equivalence to the minimum mean square 
estimator (MMSE)  approach or the Bayesian analysis. Thus 
we write the MAP estimator as: 
 

/ ,

/ /

ln  ( / , )
0

;
ln   

C D

c c D

a z z Continuous Discrete

a z z z

p A Z Z
A

is
p p

A

∂
=

∂

∂

∂

                    (30) 

 
clearly from the above we can separate the two optimizations. 
Namely this tells us that we can, first estimate the binary 
values of the on/off states of the A or R genes. Then we can 
use the standard approach to obtain the continuous, C, 
elements, in our current case the a values. The best estimator 
for the binary part is a standard MAP ( maximum a priori) 
estimator using a threshold. We can perform this task by 
examining each microcell entry for it being active or inactive. 
The algorithm for the calculation is shown in Figure 7. We 
perform the functions as we stated above (see [51] for a 
detailed analysis of this approach. In [51] there is developed 
an integrated outlier and estimation methodology as applied 
herein ). 
 

Collect Data

Determine if A/R Gene
G(i)

Present/Absent

Zero out a(i,j) for
G(i)

A/R Gene G(i)
Present

Include a(i,j) for
G(i)

No Yes

Calculate A
Matrix

Proceed to Least
Square Analysis for

that sample

Go to Next Sample

Samples Complete

Provide Final A Matrix

 
 
Figure 7: Algorithm for the calculation of the testing and 
elimination of “zeroed” gene effects. 
 

 
 

IV. ESTIMATION VERSUS IDENTIFICATION 
 
The method of estimating the structural elements of the gene 
expression can be structured using a standard set of 
methodologies. In particular we use the two approaches used 
in [43] and [51]. The [43] approach was applied to estimating 
the constituent chemical concentrations of the upper 
atmosphere, namely the inversion problem, using transmitted 
light as the probe mechanism. In this case we seek to estimate 
the gene expression matrix using the concentrations of 
secondary chemicals as expressed in color concentrations. 
This is in many ways a similar problem. 
 
A. The Model 
 

Let us consider a six gene model, two color modifying 
genes and four control genes, two each. The model is as 
follows. First is a general linear model for the gene 
production: 

 
( ) ( ) ( ) ( )dx t Ax t u t n t

dt
= + +                                    (31) 

 
Then the entries are as follows: 
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11 12 13

22

33

44 45 46

55

66

1

6

.. .. ..0..0..0
0... ..0...0...0...0
0...0... ..0...0...0
0...0...0... .. ..
0...0...0...0... ..0
0...0...0...0...0...

( ) ...

a a a
a

a
A

a a a
a

a
and

u
u t

u

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                            (32) 

 
and we assume a system noise which is white with the 

following characteristic: 
 

[ ]

[ ] 0

( ) 0

( ) ( ) ( )

E n t

and
E n t n s N I t sδ

=

= −

                                  (33) 

 
Now we can define: 
 

1

2

...0
0...
A

A
A

⎡ ⎤
= ⎢

⎣ ⎦
⎥

2

5

                                                         (34) 

 
where we have partitioned the matrix into four submatrices. 

This shows that each gene and its controller are separate. Now 
we can determine the concentrations of each protein in steady 
state as follows, neglecting the Gaussian noise element for the 
time being: 

 

1 1
1

2 1

3 3

4 4
1

5 2

6 6

x u
x A u
x u

and
x u
x A u
x u

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                                                      (35) 

 
We will argue that finding either the matrix elements or 

their inverse relatives is identical.  Thus we focus on the 
inverse elements. Now the concentrations of the anthocyanins 
are given by the 2 x 2 vector as follows: 

 

1

2

31 11

42 24

5

6

...0...0...0...0...0
0...0...0... ...0...0

x
x
xz c

Cx
xz c
x
x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤

= =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                     (36) 

 
The color model remains the same. 
 
B. The Estimator Model 
 

The system model is as follows. Let us begin with a model 
for the vector a that we seek: 

 

1

5

( ) 0 :

( ) ...

da t where
dt

a
a t

a

=

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

                                                     (37) 

 
In this case we have assumed a is a 5 x 1 vector but it can 

be any vector. The measurement system equation is given by: 
 

( ) ( , ) ( )z t g a t w t= +                                                 (38) 
 
where z is an m x 1 vector. In this case however we have 

for the measurement the following: 
 

1

2

3

1

6

( ) ( , ) ( )

...

m
m
m

z t g a t w t
x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= = +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                   (39) 

 
we now expand in a Taylor series the above g function: 
 

0 0 0

0 0
1

( , ) ( , ) ( , ) ( ) ( )

1 ...
2

N
T

i i
i

g a t g a t C a t a t a t

a a F a aγ
=

= + −⎡ ⎤⎣ ⎦

− − +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑

+

                (40) 

 
 
where we have: 
 

1 1

1

1

...

.. .. ..

...

n

m m

n

g g
a a

C
g g
a a

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥=
⎢ ⎥

∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

                                              (41) 
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Thus we have for the measurement: 
 

0 0 0( ) ( ) ( ) ( ) ( ) ( )z t C t a t g a C a a t= + −⎡ ⎤⎣ ⎦                    (42) 
 
We now use standard Kalman theory to determine the mean 

square estimate; 
 

1

1

1
0

1

ˆ( ) ˆ( ) ( ) ( ( ) ( ))

( ) ( ) ( ) ( ) ( )

( ( )

( ) ( ) ( )

T

T

N
T

i i
i

T

da t P t C t K z C t a t
dt

where
dP t P t C t K C t P t

dt

PF P K z g a

where

K t s E w t w s

γ

γ

−

−

−

=

= −

= − +

−

⎡ ⎤− = ⎣ ⎦

∑
                    (43) 

 
In discrete time we have the equation: 
 

[ ]1ˆ ˆ ˆ( 1) ( ) ( ) ( )a k a k PCK z k z k−+ = + −                   (44) 
 
Which is identical to the equation we derived from the 

Newton method. 
 
C. Model Variants 
 
We now want to consider several variants on how color can be 
generated. In our model we assumed that Expression constants 
and drivers remained the same throughout but that they were 
turned on and off thus generating differing colors. However 
there are many possibilities, 
 
1. Expression Constants Vary: In this case the a values vary 

from color to color. From a gene expression perspective 
we cannot find this an attractive alternative. However it 
may be conceivable that there are secondary controller 
A/R genes which may be playing a role which may be 
unidentified at the time of the experimental analysis. 

 
2. Expression Drivers Vary: The u values we have used to 

be the steady state drivers may be affected by various 
factors, including local factors such as plant acidity and 
location. We have assumed we know these variables. This 
assumption is based upon some past experimental 
analyses. However these may vary and must be taken into 
account. To do so we can expand the model to estimate 
them as well. 

 
3. Expression Constants are on/off: This is assumed in the 

model we have developed herein. This model assumes 
that all variables are constant and that we have just an on 
and off process of A/R genes. 

 
4. Expression Drivers are on/off: This is an intriguing 

alternative with no known physical embodiment but it 
may be the case from time to time. However the effect is 
the same for A/R expression as if we assumed the 
constants went on or off. 

 
Any combination of the above may also occur. 

V. CONCLUSION 
In this paper we have presented an interesting genus to 

study with respect to gene expression and ultimately the 
control of gene expression. The phenotypes are quite obvious 
in flower colors and in addition the hybridizing which has led 
to a wealth of examples has been done just in the past one 
hundred years. Also we have a reasonably clear understanding 
of the underlying species and we can readily assess the 
complexity of the species DNA structure. 

 
There are three problems for which this approach applies: 
 
1. Analysis: In the analysis problem we assume we know 

the expression dynamics and the secondary production 
model. Given those two we determine what color we get. 
We develop this in detail. 

 
2. Identification: The identification problem is one in 

which we know the secondary processes, we have many 
color samples and we know the protein concentrations 
which yield each color. Then we ask how do we 
determine the A matrix for the gene expression?. 

 
3. Design: This problem is of significant interest. We seek a 

desired output state, color in our example. We know the 
gene expression dynamics and the secondary model. We 
then ask how do we modify the gene expression model to 
obtain the desired output? 

 
We also have a well defined and understood set of 

pathways that give rise to the phenotype. We further know the 
effecting proteins and enzymes. We also know the gene which 
affects the proteins in question. Finally we have well accepted 
models for the expression of the genes and we can use 
generally accepted models for the dynamics of gene 
expression. 

 
This has led us in our final section to a modeling of gene 

expression as a set of definable dynamic systems. We have 
used a certain set of those systems to discuss examples. 
However certain key questions remain: 

 
First, what are the dynamic models which can adequately 

and correctly describe the abrupt coloration of the flowers? 
We have a good understanding of many of the unstable 
dynamic systems models which can describe such 
phenomenon but what is the relationship between what occurs 
in the cell and what the models describe? 
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Second, we have used an ensemble approach versus the 

microbiologists’ time approach to modeling the system. We 
have posited an equivalency based upon the Ergodic Theorem, 
which states the time average and ensemble average are equal. 
However there is no experimental proof of this fact.  

 
Third, in any systems approach, we always look at issues as 

observability and controllability. Observability concerns 
whether we can see the outputs knowing the system model 
and can we predict the initial condition. This must be 
validated experimentally. Controllability is simply can we 
drive the system to a desired state with a control function. The 
controllability question goes to the heart of flower color 
design. If we accept the validity of our models the answer 
appears to be determinable for any set of defined pathways. 

 
Fourth, we have suggested a microarray approach to 

estimating the coefficients of the dynamic system. This is one 
of many possible techniques. The first part we should do is 
address this from an experimental perspective. Namely 
perform the microarray analysis. The second part is to 
investigate alternative methods of solving the system 
identification problem via alternative bench based validation 
tools. 

 
Fifth, specific phenotypic design must be considered in 

more detail and experimentally validated. 
 
Sixth, we use a stochastic model for the expression and 

pathway analysis. We used this as a way to account for 
dimensions we could not include because they were expressed 
at too low a level or because we had no knowledge of their 
existence. Thus we argued that noise may be true random 
processes or the aggregation of currently unknown tertiary 
processes. Experimental validation of this modeling element 
must be performed. 

 
Seventh, can this approach be carried over to any other cell 

line? The answer we believe is yes it can and readily. What 
we have done herein is to focus on phenotypic characteristics 
and ones which are readily characterizable by well understood 
pathways. Such systems exist in many other biological 
systems including the human.  
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